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Stochastic Resonance: Linear Response 
and Giant Nonlinearity 

M. I. D y k m a n ,  1 D.  G. Luchinsky, 2 R. Mannella,  3 P. V. E. McClintock,  4 
N.  D.  Stein, 4 and N.  G. Stocks  4 

The response of a bistable noise-driven system to a weak periodic force is 
investigated using linear response theory (LRT) and by analogue electronic 
experiment. For quasithermal systems the response, and in particular its 
increase with increasing noise intensity D, are described by the fluctuation- 
dissipation relations. For small D the low-frequency susceptibility of the system 
Z(e)) has been found in explicit form allowing for both forced oscillations about 
the states and periodic modulation of the probabilities of fluctuational transi- 
tions between the states. It is shown, both theoretically and experimentally, that 
a phase lag ~ between the force and the response passes through a maximum 
when D is tuned through the range where stochastic resonance (SR) occurs. 
A giant nonlinearity of the response is shown to arise for small D and small 
frequencies of the driving force. It results in the signal induced by a sinusoidal 
force being nearly rectangular. The range of applicability of LRT is established. 

KEY WORDS: Stochastic resonance; fluctuation-dissipation relations; 
spectral density of fluctuations; bistable systems; fluctuational transitions; giant 
nonlinearity; linear response; susceptibility. 

1. I N T R O D U C T I O N  

Stochastic resonance (SR) is a phenomenon in which, counterintuitively, 
a weak periodic signal, usually in a bistable system, can be amplified 
by the addition of external noise. Considered initially in the context of 
ice ages, (1'2) it has been observed recently in .active (3) and passive (4) 
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optically bistable systems, hybrid electron spin resonance (ESR) devices, (5) 
a magnetoelastic ribbon, (6) and also in several analogue electronic 
experiments. (7 10) The origin of SR in all these seemingly different systems 
lies in the fact that the periodic driving force modulates the probabilities of 
fluctuational transitions between the coexisting stable states and hence the 
populations of the states; in turn this gives rise to a comparatively strong 
modulation of a coordinate of the system with an amplitude proportional 
to the distance between the stable positions. "1) Since the transitions them- 
selves arise because of noise and the transition probabilities increase 
sharply (exponentially, for Gaussian noise) with the noise intensity, the 
efficiency of the modulation is also sharply increased. The theoretical 
consideration of SR has been carried out, most commonly, for a discrete 
two-state model or, in the case of continuous systems, was based on an 
approximate or numerical solution of the Fokker-Planck equation for a 
periodically driven system, sometimes with contradictory results. (1' 2. 10, 1~16) 

An alternative approach to SR is based (8) on linear response theory 
(LRT). According to LRT, if a system with a coordinate q is driven by a 
weak force A cos s (the addition to the Hamiltonian function of the 
system is of the form of -Aq cos (2t), there arises a small periodic term in 
the ensemble-averaged value of the coordinate, 6(q(t)), oscillating at the 
same frequency s and with amplitude a proportional to that of the 
force(17): 

5(q(t))=acos(f2t+(9), A~O (1) 

a = A IZ(•)I, ~ = -- arctan[-Im ~((O)/Re Z(f2)] (2) 

The quantity Z(12) here is the susceptibility of the system. Equation (1) 
holds for dissipative and fluctuating systems that do not display persistent 
periodic oscillations in the absence of the force A cos Ot; it is SR in bistable 
systems of this kind ("conventional SR") that is considered below ("non- 
conventional SR" will be considered elsewhere(iS)). The function Z((2) 
contains, basically, all information on the response of the system to a weak 
driving force. It gives both the amplitude of the signal, a, and its phase lag 
with respect to the force, ~b. In turn, the value of �88 2 gives the intensity (i.e., 
the area) of the delta-shaped spike in the spectral density of fluctuations 
(SDF) Q(og) of the system at the frequency I2 of the driving force, 

�9 ( 4 n z )  - 1  d t  2 l~m f ~  q(t) exp(iogt) (3) Q(co) 

The onset of such a spike follows immediately from (1) with account taken 
of the principle of the decay of correlations: 

(q(t) q(t ' ) )~(q(t))(q(t ' ) )  for [ t - t ' l ~  
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Following ref. 3, the response of the system, in the context of SR, is 
often characterized by the ratio R of the area of the above spike to the 
value Q~~163 of the SDF at the given frequency f2 in the absence of 
periodic driving, i.e., by the signal-to-noise ratio. It is evident from (1)-(3) 
that R may be expressed in terms of a susceptibility Z(~2): 

R= �88 z [Z(~)IZ/Q(~ (+4 ~ 0 )  (4) 

Therefore, the evolution of the susceptibility and of Q~~ with varying 
noise intensity D show immediately whether or not SR (i.e., an increase 
and subsequent decrease in R with increasing D) is to be expected at a 
given frequency. 

An important advantage of describing SR in terms of the susceptibility 
is that such a description relates SR to standard linear-response phenomena 
(conductivity, magnetic susceptibility, etc.) investigated in physical kinetics. 
One more advantage is that quite often the systems investigated are in 
thermal equilibrium or in quasiequilibrium. In this case the susceptibility 
can be expressed immediately in terms of the SDF Q~~ in the absence 
of periodic driving via the fluctuation-dissipation relations~ 

Re ;((on) = 2T PfO dO)l Q~~162176 r176 - c~ -1 

7~(.0 
Im ;((~o) = -~- Q(~ 

(5) 

where P implies the Cauchy principal part and T is temperature in energy 
units. It follows from Eqs. (4) and (5) that the onset of SR can be predicted 
from purely experimental data on the evolution of the SDF of a system 
with temperature without assuming anything at all about the equations 
that describe its dynamics, i.e., for a system treated as a "black box." 

The relevance of this approach to SR is seen from Fig. 1, where some 
data from analogue experiments ~8) for an electronic system simulating 
Brownian motion in a bistable potential are shown. The system simulated 
is in quasithermal equilibrium, with noise intensity D standing for tem- 
perature T in (5). The data demonstrate that SR in signal-to-noise ratio is 
described quantitatively by the fluctuation-dissipation relations (5) and 
Eq. (4) even in the range where the explicit analytic calculation of the 
susceptibility of the system was not possible. 

However, it is not only signal-to-noise ratio that is important in the 
context of the influence of noise on the response of the system to a 
sinusoidal driving force. One of the purposes of the present paper is to 
predict, on the basis of the analysis of the susceptibility of a bistable 
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Fig. 1. Signal-to-noise ratio vs. noise intensity for the Brownian motion in the double-well 
potential U(q) of ( 6 ) : / ) + 2 / ' 4 +  U'(q)=(2F)l/2f(t)+A cos g2t. The values o f /~=  6.51 x 10-4R 
are given for ~2=0.0695, A=0.1 ,  and / '=0.125.  ( [ ] )  Direct measurements, ( + )  data 
calculated from the measured Q(~ via fluctuation-dissipation relations (5). 

system, and to observe experimentally a bell-shaped dependence of the 
phase lag r of the signal on the noise intensity D. The problem of the phase 
shifts is considered in Section 2. In Section 3 we investigate the nonlinearity 
of the response of a bistable system to a periodic force and demonstrate, 
both theoretically and experimentally, the onset of an extremely strong 
nonlinearity for low-frequency driving. Section 4 contains some concluding 
remarks. 

2 .  P H A S E  S H I F T S  I N  S T O C H A S T I C  R E S O N A N C E  

The presence or absence of phase shifts in SR is a conundrum of many 
years' standing. The first prediction of a phase shift seems to have been due 
to Nicolis, (2) who concluded that, for an overdamped system fluctuating 
in a bistable potential, ~b=-arctan(g2/W(~ where W (~ is the sum 
of the transition rates out of each of the potential wells; similar results 
were also obtained by McNamara and Wiesenfeld. (~2) On the other hand, 
Gammaitoni et  aL (9) claimed that analog simulations (~~ as well as numeri- 
cal computations ~ "had ruled out [the phase shifts] as apparently 
spurious." Because the onset of the phase shifts follows automatically from 
the LRT approach to SR, (8) Gammaitoni et  al. (9) assumed this in itself to 
be a good reason to doubt the applicability of LRT to SR. Recently, Is) 



SR: Linear Response and Giant Nonlinearity 467 

when investigating SR in a hybrid ESR system, this group did observe 
large phase shifts. However, the dependence of ~b on the noise intensity was 
found to be monotonic, apparently due to the signal having been modified 
by passage through a two-state filter. In contrast, the dependence of ~b on 
the noise intensity that follows from LRT for the undistorted signal, and 
which has been observed in the experiments reported below, is strongly 
nonmonotonic. 

The problem of phase shifts in SR is also interesting from the view- 
point of relating SR to standard resonance phenomena3 TM It is well known 
in physics that when the frequency s of an external driving force is swept 
through the resonant frequency of a system the phase lag ~b of the signal in 
the system decreases monotonically from nearly zero for small s to nearly 
-180  ~ for large Q, passing through approximately - 9 0  ~ at the resonant 
value of g2. Conventional SR in bistable systems arises because, with 
increasing noise intensity, the probabilities of fluctuational transitions 
between the stable states become of the same order of magnitude as or 
larger than the frequency ~ of the driving force, thereby switching on the 
mechanism of strong response associated with the transitions. So, the 
physics is different from that in a standard resonance, and the dependence 
of the phase lag on the noise intensity would not necessarily be expected 
to be the same as ~b(Q) in a resonating system. Last but not least, the 
investigation of the phase shifts under SR can give an important extra 
argument in relation to whether ~s) or not ~9) SR can properly be treated as 
a linear response phenomenon. 

In this section we show in considerable detail, both experimentally and 
theoretically, that phase shifts do indeed accompany SR; however, in con- 
tinuous systems, they take a form completely different from that predicted 
for two-state systems. ~2) We treat the simplest nontrivial system: an 
overdamped Brownian particle moving in a symmetric bistable potential 
and, in addition, driven periodically, 

( l+U'(q)=Acosg2t+f( t ) ,  U(q)= _ �89 �88 (6) 

where f ( t)  is zero-mean Gaussian noise of intensity D, 

( f ( t )  f ( t ' ) )  = 2Db( t -  t') (7) 

In the absence of periodic forcing, the system (6), (7), irrespective of 
the particular form of the (confining) potential U(q), is quasithermal: its 
distribution over energy U(q) (an overdamped system has potential energy 
only) is Gibbsian, with temperature 

T = D  

822/70/1-2-30 
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Therefore, the fluctuation-dissipation relations (5) hold and, for weak 
periodic driving force, i.e., for small A in (6), the susceptibility X(D) can be 
expressed in terms of the spectral density of fluctuations Q(O)(09) for A = 0. 
Explicit expressions for Q(O)(09), z(09) can be obtained analytically for small 
noise intensities (low temperatures) D ~ A U where, for a general double- 
well potential, AU is the depth of the (shallower) potential well, and 
A U = 1 for the model (6). In this range Q(0)(09) and Z(09) are given ~11' 19) by 
the sums of partial contributions from fluctuations about the equilibrium 
positions q., ['U'(q.) = 0, U"(q.) > 0, n = 1, 2; q. = ( -  1)" for the potential 
(6)] and of the contribution from interwell transitions, 

Q(0)(09)= • w.Q(O)(09)+ Qi0)(09), 
n = l , 2  ( 8 )  

z(09) = Y~ w.z.(09) + Ztr(09) 
n - - l , 2  

Here, w. is the population of the nth stable state. The susceptibilities Z.(co) 
and Ztr(09) are expressed in terms of Q(O)(09), QIO)(09) by Eq. (5), and 
therefore only the spectral densities of fluctuations will be written down 

!o)(09) 0(2)(09), below in explicit form. For the model (6), w, = w2 = 1, Q, . = ~ . .  
and Z~(09) = Z2(09)- 

The SDF for the intrawell vibrations Q(O)(09) can be obtained by 
expanding U(q) about the equilibrium position q.. Assuming the nonlinear 
terms small, and allowing for them by perturbation theory, (~9) one obtains 

Q~O)(09) L.(09) ~LZ(09)[U~Wl-9 ,,,2 . . . .  2 ~- - U~ U.(4U.  +092) -1 ] 

(9) 
L.(09) = _l D(U~ '2 + 092) -i 

7~ 

where all derivatives U~ k) - U(k)(q.) are evaluated for q -- q.. The contribu- 
tion from interwell transitions is 

QI~ = (life) WlWz((q>] ~  (q)(2~ 2 w(~176 2) (09 "~. u1',2) 

w(O)_ W(O)(D)= w(O)+ w(o) ( q ) ( O ) = q _ ! t ~ H , , , r  2 (10) 
"" 12 " '  21 , 2 ~ n  

Here, (q)~n ~ is the average value of the coordinate in the nth well 
neglecting interwell transitions and W ~  is the probability of the transition 
n--+ m in the absence of periodic forcing ['corrections ~ D / A U  to the 
Kramers expression for the transition probabilities (2~ are required in (10)]. 
In deriving (10) we have utilized the inequality W(~ 
implying that the transition probabilities are very much smaller than the 
relaxation rate of the system f2 r (a condition that is necessary for the con- 
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cept of a transition between well-defined metastable states to be meaning- 
ful). 

To lowest order in D/A U, to zeroth order in f2/s r, but for arbitrary 
f 2 / W  m), the expressions for the signal-to-noise ratio R of (4) and for the 
phase lag ~b of (2) resulting from (5) and (8)-(10) for the model (6) become 

~A 2 (22 W (0)2 --b y22D 2 
R - - -  g2, D ~ g 2 r ,  W ( O ) ~ D  (11) 

4D 2 f2~ W (~ + s ' 

~b = - arctan[(f2/f2r)(~2~ W (~ + f22D)/(f2r W (~ + f22D)] (12) 

where f2~ = U]' = U~ = 2. For small D, where W (~ ~ (f22/y22)D, it follows 
from (11) that R~-rcA2/4D, q 6 ~ - ( 2 / s  r. Thus, for a fixed forcing 
frequency f2, R decreases with increasing D, whereas ~b remains small and 
nearly independent of D. 

For larger values of D, on the other hand, 

R = (zcA2/4D2)[ W ( ~  (~2D2/~2 r W(~ 

~b = - arctan[g?f2~ W(~ r W (~ + ~Q2D)] (13) 

D ,> w(~ (r22/O~)D 

The behavior of R and ~b as given by (13) depends on the ratio 
~ =  W(~ When it is small, R is sharply decreasing while [~bl is 
sharply increasing with increasing D, 

q6 ~_ - c~ =- - W(~ ~ ,~ 1 (14) 

For e --- 1, R passes its minimum and then increases with D (i.e., with c~) 
up to comparatively large D ~ A U where the weak-noise approximation 
(8)-(10) is inapplicable. It is this increase that is associated with conven- 
tional SR. 

The central interest of the present section relates, however, to the 
behavior of ~b. It follows from (13) that the sharp increase of Ir with 
increasing D in (14) saturates in the range e >> 1, and, for D - D m ~  x ~ A U, 
Ir reaches its maximum: 

(-~b)m~=arctan[�89 W(~ = (2(Dmax/g2~) 1/2 (15) 

[note that, in contrast to the behavior of R vs. D, the weak-noise theory 
(8)-(10) holds in the vicinity of the maximum of Ir we stress that it is the 
approximation (8)-(10) that fails for strong noise, not LRT]. The decrease 
of -~b for D>Dmax is seen from (13) to be much less steep than the 
increase described by Eq. (14). Overall, it follows from (12) and (13) 
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Fig. 2. The phase shift -~b (degrees) between the periodic force of amplitude A and the 
averaged coordinate (q(t)) of the overdamped bistable system (6) measured as a function of 
noise intensity D in the electronic experiment for O=0.1 and (O) A=0.04, (D) A=0.2. 
The dashed curve represents the theoretical prediction based on LRT and the fluctuation- 
dissipation theorem; the full curve takes account of nonlinear corrections for A = 0.02. The 
inset shows the normalized signal-to-noise ratio in the region of the minimum in R. 

[see also Fig. 2, where ~b vs. D as given by (12) is p lo t ted]  that the phase 
shift displays a resonance-type (nonmonoton ic )  behavior  as a function of 
the noise intensity D. This prediction is in contrast  with the earlier 
theories(Z,~2) for two-state systems displaying SR in the signal-to-noise 
ratio, but  exhibiting a mono ton ic  dependence of I~bl on D; the phase shift 
in these theories is described by Eq. (13) with /2 r set equal to ~ (if the 
intrawell relaxation was infinitely fast, the intrawell mot ion  would not  
come into play and the system would behave as a two-state one): 

( ~ ) t  . . . .  ta te  = - arctan(s176 

The LRT predictions (12) and (13) have been tested by means of  an 
electronic experiment, using a circuit of  conventional  design (2n to model 
(6). It is immediately evident from the measurements  (Fig. 2), first, that  
contrary  to refs. 9 and 10, large phase shifts do indeed occur as D is 
varied and, second, that  the L RT  prediction describes the data  remarkably  
well. For  (6), with the parameters  used in the experiment, a maximum 
value of  -~b is predicted by L RT  to be equal to 68 ~ and to occur at 
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Dma x = 0.08,  which is to be compared with the experimental observation for 
A = 0.04 of (-~b)ma x = (66 + 2) + at D = 0.08 _+ 0.01. In accordance with the 
LRT prediction, the decrease of I~b] for D>Dmax is much more gradual 
than the rapid increase seen below Dma x. The measured ~b is relatively 
insensitive to A for the chosen frequency f2/f~ r (nonlinear effects under SR 
are discussed in Section 3 below). 

The physical origin of the nonmonotonic behavior of the phase lag 
with increasing noise intensity D can be readily understood if one notices 
that, for very small D ~ ~U, the system is effectively confined to a single 
well and ~b would be expected to be small because (2 is small compared 
with the reciprocal characteristic time of intrawell motion; in the opposite 
limit of very large D > A U the double-well character of the potential 
becomes irrelevant and ~b-~ 0, for the same reason; so, at the intermediate 
values of D where the interwell transitions play a substantial role and their 
probabilities are of the order of the frequency f2, so that the field modulates 
the populations of the states effectively, a phase lag associated with this 
modulation must inevitably give rise to a maximum in [~b], just as observed. 
We note that this behavior and the decrease in the signal-to-noise ratio for 
very small D are both related to the continuity of the system, and they are 
not described by a two-state theory. 

The observation of the phase lags for SR in bistable systems shows 
explicitly the difference between this "conventional" SR and standard 
resonance: because D does not match any internal characteristic vibrational 
frequency of the system, (13) it should only be of the same order of 
magnitude as or less than the Kramers hopping frequency. This is to be 
contrasted with SR in underdamped monostable systems, (Is' 227 which is a 
true resonance phenomenon where external noise is used to tune the 
natural oscillation frequency of the system to that of the periodic force. The 
differences between stochastic resonance and a standard (e.g., mechanical) 
resonance are summarized in Fig. 3. 

The excellent agreement between the LRT prediction and the 
experimental phase lag measurements in Fig. 2 can be taken as an extra 
vindication of our suggestion ~s~ that LRT provides a useful approach to the 
SR problem. In addition to the appealing simplicity and elegance of the 
linear response formalism and to the fact that LRT makes it possible to 
describe explicitly, allowing for intrawell vibrations, the phase shifts and 
the signal-to-noise ratio R at small D, this approach has a number of other 
advantageous features. In particular, (a) for systems that are in thermal 
equilibrium or quasiequilibrium, LRT makes it possible to predict the 
onset of SR solely on the basis of experimental measurements of the 
spectral density of fluctuations in the absence of periodic driving Q(~ 
and its evolution with temperature (noise intensity), even in cases for 
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Fig. 3. Comparison (schematic) of stochastic resonance with a standard (e.g., mechanical) 
resonance. (a) In SR, the response a of the system exhibits a maximum when plotted as a 
function of noise intensity D; (b) in a standard resonance, the response a shows a maximum 
when plotted as a function of the driving frequency ~2; (c) the phase lag - 4  in SR varies non- 
monotonically with D, and the maximum lag does not necessarily coincide with the maximum 
in a(D); (d) the phase lag -~b in a standard resonance varies monotonically with ~ and is 
equal to +~/2 where a(O) passes through its resonance maximum_ The different processes 
responsible for creating the SR maximum are indicated in (a). 

which the response cannot be calculated (e:g., because there is no simple 
theoretical model of the system under study); (b) LRT is as easily applied 
to underdamped systems (8) as it is to overdamped systems such as (6); 
and (c) the predictive power of the LRT approach is rather strong: this 
approach has led, for example, to the observation (18) of quite new kinds of 
SR in diverse classes of systems that differ markedly from the conventional 
SR system with two static stable states which is driven additively by noise 
and a periodic force. 

It seems puzzling that, despite these manifest advantages, the applica- 
bility of LRT, which is generally recognized in other areas of physics, is 
seriously doubted (9) when SR is considered. The only limitation on 
the applicability of LRT is posed by the amplitude of the driving force: it 
should not be too large. The features of the nonlinear response of bistable 
systems and the range of applicability of LRT are considered in the next 
section. 
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3. G I A N T  N O N L I N E A R I T Y  OF L O W - F R E Q U E N C Y  R E S P O N S E  
OF B ISTABLE S Y S T E M S  

An intriguing feature of fluctuating bistable systems is that they 
provide the possibility of observing a strongly nonlinear response to a 
comparatively weak low-frequency driving force. This possibility arises (8) 
because the force modulates the probabilities Wnm of fluctuational trans- 
itions between the states. In a quite general case where the noise driving a 
system is Gaussian (but not necessarily white), the transition probabilities 

�9 1(23) W ~  in the absence of periodic forcing are propomonal to 
exp(-~n/@), where ~ is the characteristic noise intensity, and the strength 
of the modulation of Wnm is determined by the relation between the force- 
induced change of the "activation energy" of the transition ~ ,  and the 
noise intensity 9.  Obviously, this relation can be large for small ~ even if 
the force itself is small�9 

In the case of low-frequency and comparatively weak force A cos s 
the modulation of the activation energies is "parametrical": the transition 
probabilities Wn~ are determined by the instantaneous value of the force: 

mnm =- mnm(t)= W(,~exp(gncosf2t), gn=~,A/~, s r (16) 

H e r e ,  O r is the relaxation rate of the system, and the quantities gn are eqtial 
to the derivatives -(c~Nn/0A)A= o [~,(A) is the value of the activation 
energy of the transition from the state n (n = 1, 2) of a system driven by a 
static force A ]. Since the force is assumed weak, only the term linear in A 
is taken into account in the exponent in (16). At the same time, the 
parameters g~,2 are not assumed small, because they are determined by the 
ratio of A to the noise intensity @, and N is itself small. In the particular 
case of overdamped motion in a symmetrical double-well potential 
described by Eq. (6) 

g l  = -g2 =AID (17) 

The periodic modulation of the transition probabilities results in a 
modulation of the instantaneous values of the populations w~,2(t) of the 
stable states, i.e., in the periodic redistribution of the system over the states 
(i.e., over the potential wells or, more generally, the regions of the phase 
space adjacent to the attractors). This redistribution is described by the 
balance equation: 

~q(t)  = - (w12 + w2~)w,(t)+ w:~, w 2 ( t ) =  1 -  w~(t) (18) 

In the limit Igl,21 '~ 1, Eqs. (16) and (18) go over into the LRT result 
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for wl,2. In the opposite limit, ]g1,21 >> 1, the integral that gives the steady 
solution of (18), w~')(t), 

can be evaluated (8) by the steepest descent method. The course-grained time 
dependence of the populations in this case is of the form of a rectangular 
wave. In particular, for the model (6), 

w~S~(t) - 1 - w(2~(t) 

= tanh 2, 2 = (2reD~A)1~2 (w]O)/2f2) exp(A/D), A > D 

The parameter v? in (20) determines the amplitude of the rectangular 
wave. Note that for even large AID this parameter can be small if the 
frequency of the driving force exceeds strongly the transition probabilities 
W(~ exp [g, 1, and the latter are exponentially small for small D. On the 
other hand, for 2 > 1.5 the value of # --- 1, i.e., the populations of the stable 
states change periodically from nearly 1 to nearly 0. 

The rectangular modulation can be easily understood qualitatively by 
noting that, for large [g1,21, a transition from a given state n happens, 
with an overwhelming probability, within a time ~g2 -1 [g,[-1/2 when 
the potential well is at its shallowest. This time is short compared with the 
period 2~/f2 of the field. Of course, the modulation comes into play if 
the probability of the transition over this time, i.e., the ratio 
W(,0m ) exp([ gn [)/t2 [ g~ 11/2, is not small. 

In the general case of arbitrary g, ,  Eq. (18) can be analyzed numeri- 
cally. To find the steady solution w]~)2(t) it is convenient, allowing for its 
periodicity and using a standard ~24) expansion of the cosine exponent in 
(16), to change from the differential equation (18) to the set of difference 
equations for the Fourier components w.k of w~)(t) (W2k ~" 6k, 0 - -  Wlk ) :  

w~S)(t) = ~, Wl~ exp(ikf2t) 
k - -  - -  o o  

[iks + W~~ Io(gl) + W(z~ Io(gz) ]wlk 

+ [ Igl) + Wl _, = w ~ 
s ~ O  

Here, I .  are Bessel functions of imaginary argument324) 

(21) 
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Because of the nonsinusoidal time dependence of the populations of 
the states, the time dependence of the ensemble-averaged value of the coor- 
dinate of the system also becomes nonsinusoidal and is not described by 
the simple expression (1). In the general case it is of the form 

6(q(t)) = ~ a(n) cos[nf2t +(~(n)] (22) 
n>~O 

(we do not consider the case where vibrations occur at subharmonics: from 
the viewpoint of dynamics the periodic force is weak, and the nonlinearity 
arises only via the interplay of periodic and random forcing). It is seen 
from Eqs. (3) and (22) that the spectral density of fluctuations of the 
coordinate in the nonlinear regime contains 6-shaped spikes not only at the 
frequency O, but also at the overtones nO, n ~> 2. The intensity (area) of the 
spike at frequency nO is equal to Jag(n). 

For small noise intensities and a dynamically weak periodic force, the 
forced vibrations of the system can still [cf. Eq. (8)] be described as a super- 
position of small-amplitude sinusoidal vibrations about the stable states and 
nonsinusoidal, generally speaking, vibrations due to the modulation of the 
populations of the states. Therefore, 

6(q( t ) )=A ~ w~S~(t) Re[z,(f2)exp(-if2t)] 
n = l , 2  

+((q)~~176 (23) 

The partial susceptibilities Zn(og) for overdamped motion (6) are given by the 
linear-response weak-noise-limit relations (5) and (8), whereas the Fourier 
components w~ of the population of the state 1 are given by Eq. (21). 
These equations also give immediately the values of the amplitudes a(n) 
and phases ~b(n) of the harmonics in (22). We note that the expressions 
for the amplitude a-= a(1) and phase ~b = ~b(1 ) of the vibrations at the eigen- 
frequency can be written in the form (2) with the susceptibility Z((2) 
replaced by 

~(12) = W~o)~(s ) + (1 - Wlo) Z2((2) + 2A lw~l((q)]~ (q)~O)) 

+ ()~(f2) -- Z*(f2))w*2 (24) 

The quantity )~(f2) should be substituted for Z(f2) into the expression (4) 
for the signal-to-noise ratio at the eigenfrequency of the periodic field to 
describe the effects on R of the nonlinearity related to modulation of the 
populations of the stable states. 

A sample of numerical results for R and ~b that demonstrates the effects 
of nonlinearity is shown in Fig. 2. The comparison with the predictions of 
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the linear-response theory shows that, for the value of the frequency s 
chosen, these effects are small. It is important to note that the degree to 
which the response is nonlinear depends not only on the amplitude of the 
periodic force (obviously, nonlinearity is always large for a dynamically- 
strong force when the amplitude of the forced vibrations about the stable 
states is of the order of the distance between the states), but also on the 
frequency. This is seen from Eqs. (20) and (21), but can also be readily 
understood from the physical picture of the effect. Of course, the ratio of 
the amplitude of the force-induced modulation of the activation energies of 
the transitions to the noise intensity is large for very small noise intensities. 
But the point is that the corresponding nonlinearity comes into play 
provided that the transitions occur with significant probability within one 
period of the force; otherwise the effect gets averaged out in a symmetrical 
situation of the type (6). We note that, in the case of an asymmetric 
potential or attractors of more complicated origin, the ratio of the 
averaged-over-one-period probabilities of the transitions ff'12/1~21 differs 
strongly from r~1(o)/~l~0),, 12/" 21 for tgl,21 >> 1 in (16). Therefore even in the range 
where the periodic modulation of the populations is small, the change 
of their average values influences the response substantially, since the 
weighting factors for the contributions from the forced vibrations about the 
two stable states [the factors wl0, 1 - wl0 in (24)] are changed as compared 
with their zero-field values. However, the amplitudes of these vibrations are 
themselves small. 

To seek the onset of the giant nonlinearity of the response to a low- 
frequency driving force, analogue electronic experiments were performed 
with the circuit simulating (6), but now for much lower frequencies t2 than 
used when just the phase shifts were being investigated (see Section 2 
above). It would be expected for the system (6) that, when (20) holds, the 
signal resulting from sinusoidal driving should be nearly rectangular, 

(q(t))  "~ 1 - 2w]S)(t) (25) 

where w]S)(t) is given by (20). A signal approximating just such a shape has 
indeed been observed (see Fig. 4), and for comparatively small amplitudes 

Fig. 4. The averaged coordinate (q(t)) measured for the electronic circuit simulating the 
overdamped system (6) with f2= 1.9x 10 -5, A=0.1, D=0.0161. As predicted, the results 
approximate a square wave. The deviations are due primarily to intrawell vibrations. 
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of the force (the data in Fig. 3 refer to A =0.1). The distortion of the 
observed shape of the signal with respect to a rectangular one is due to the 
c~ontribution from the vibrations about attractors and also to the deviation 
of w ~ ( t )  as given by (19) from the square wave (20). 

4. C O N C L U S I O N S  

It follows from the above results that phase lags indeed occur in SR 
and, for conventional SR in bistable systems, they display a bell-shaped 
dependence on the noise intensity. The position of the maximum of the 
phase shift occurs for smaller values of the noise intensity D than the 
position of the maximum of the signal-to-noise ratio R. The excellent agree- 
ment obtained between experiment and the LRT prediction of the phase 
lag strongly supports the contention (s) that SR may properly, and usefully, 
be considered as a linear response phenomenon. For thermal equilibrium 
and quasithermal systems the LRT analysis can be done on the basis of the 
fluctuation-dissipation theorem. 

A particularly interesting feature of SR in bistable systems, outside the 
domain of LRT, is that their response can display a giant nonlinearity. In 
particular, the shape of the signal induced by a low-frequency  sinusoida! 
force can differ drastically from a sinusoid even for small amplitudes of the 
force. Apart from its purely scientific interest, the strong nonlinearity is of 
potential importance in relation to various applications; we mention, in 
particular, noise-protected heterodyning. 
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